National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Optimization of Basic Magnetic Field Homogeneity in MR Tomography
Hadinec, Michal ; Brančík, Lubomír (referee) ; Frollo, Ivan (referee) ; Bartušek, Karel (advisor)
This thesis is concerned with problems of measuring and mapping of magnetic field in MR tomograph, for purpose of magnetic flux density homogeneity optimization. Attention is paid to mapping techniques on rotary symmetric volume and to ways of magnetic fields optimization with utilization of passive and active correction systems. Theoretical analysis of magnetic field decomposition with utilization of spherical harmonics and numerical decomposition is made. Mapping and approximation techniques of basic magnetic field are verified by experiments in the laboratory at the Institute of Scientific Instruments AS CR in Brno.
Analysis of Selected Artefacts in Diffusion-Based Magnetic Resonance Measurements
Marcoň, Petr ; Král, Bohumil (referee) ; Frollo, Ivan (referee) ; Bartušek, Karel (advisor)
The presented dissertation thesis analyses artefacts in diffusion-weighted images. In medical practice, the artefacts can impede the diagnostics of pathological tissues and, therefore, need to be eliminated. As the first step within the thesis, an analysis of the most frequent artefacts in diffusion-weighted images is performed, and the hitherto known approaches to artefact elimination are described. In order to facilitate the reduction of artefacts caused by the inhomogeneity of the static magnetic field and induced by eddy currents, a novel three-measurement method is shown. This technique will find application especially in measuring the diffusion coefficient of isotropic materials. At this point, it is important to note that a significant and commonly found problem is the magnetic susceptibility artefact; different magnetic susceptibility values at the boundary between two materials can cause magnetic field inhomogeneities and even complete loss of the signal. Therefore, we designed a novel method for the measurement of magnetic susceptibility in various samples of magnetically incompatible materials, which do not produce any MR signal. The technique was experimentally verified using a set of differently shaped diamagnetic and paramagnetic samples. In addition to the magnetic susceptibility problem, the thesis presents artefacts such as noise, motion-induced items, hardware limitations, chemical shift, and the dependence of the diffusion coefficient on the temperature. To enable precise measurement of the diffusion coefficient, we proposed a thermal system; in the experiment, it was determined that when the measurement error does not exceed 5%, the temperature change should not be higher than 0,1 °C. In the final sections of the thesis, practical application examples involving the designed methods are shown.
Analysis of Selected Artefacts in Diffusion-Based Magnetic Resonance Measurements
Marcoň, Petr ; Král, Bohumil (referee) ; Frollo, Ivan (referee) ; Bartušek, Karel (advisor)
The presented dissertation thesis analyses artefacts in diffusion-weighted images. In medical practice, the artefacts can impede the diagnostics of pathological tissues and, therefore, need to be eliminated. As the first step within the thesis, an analysis of the most frequent artefacts in diffusion-weighted images is performed, and the hitherto known approaches to artefact elimination are described. In order to facilitate the reduction of artefacts caused by the inhomogeneity of the static magnetic field and induced by eddy currents, a novel three-measurement method is shown. This technique will find application especially in measuring the diffusion coefficient of isotropic materials. At this point, it is important to note that a significant and commonly found problem is the magnetic susceptibility artefact; different magnetic susceptibility values at the boundary between two materials can cause magnetic field inhomogeneities and even complete loss of the signal. Therefore, we designed a novel method for the measurement of magnetic susceptibility in various samples of magnetically incompatible materials, which do not produce any MR signal. The technique was experimentally verified using a set of differently shaped diamagnetic and paramagnetic samples. In addition to the magnetic susceptibility problem, the thesis presents artefacts such as noise, motion-induced items, hardware limitations, chemical shift, and the dependence of the diffusion coefficient on the temperature. To enable precise measurement of the diffusion coefficient, we proposed a thermal system; in the experiment, it was determined that when the measurement error does not exceed 5%, the temperature change should not be higher than 0,1 °C. In the final sections of the thesis, practical application examples involving the designed methods are shown.
Optimization of Basic Magnetic Field Homogeneity in MR Tomography
Hadinec, Michal ; Brančík, Lubomír (referee) ; Frollo, Ivan (referee) ; Bartušek, Karel (advisor)
This thesis is concerned with problems of measuring and mapping of magnetic field in MR tomograph, for purpose of magnetic flux density homogeneity optimization. Attention is paid to mapping techniques on rotary symmetric volume and to ways of magnetic fields optimization with utilization of passive and active correction systems. Theoretical analysis of magnetic field decomposition with utilization of spherical harmonics and numerical decomposition is made. Mapping and approximation techniques of basic magnetic field are verified by experiments in the laboratory at the Institute of Scientific Instruments AS CR in Brno.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.